
Transport Properties of Specific Nephron Segments Proximal Tubule

- Reabsorbs 65% of the H₂O and Na⁺ leaving the glomerulus
- 1. Draw the transporters/channels of the proximal tubule

- The tubule epithelial cells of the proximal tubule are permeable to sodium due to the channels found on the luminal cell membranes
 - $\circ~$ Na⁺/amino acid symporter on luminal membrane \rightarrow non-regulated
 - Na⁺/H⁺ exchanger on the luminal membrane \rightarrow regulated
 - Na⁺/K⁺ ATPase on basolateral membrane \rightarrow regulated
- Once sodium enters the tubule epithelial cells due to its concentration gradient, the filtrate becomes more dilute. Therefore, there becomes a concentration gradient for water moving out of the filtrate. Water can move paracellularly or transcellularly
 - Water channel (Aquaporin I) found on the luminal and basolateral membranes → non-regulated
- Almost all of the glucose in the filtrate is reabsorbed in the proximal tubule
 - Na⁺/glucose symporter on luminal membrane → non-regulated
 - ∧ A glucose uniporter and an amino acid uniporter on basolateral membrane→ non-regulated
- K⁺ and Cl⁻ are also reabsorbed in the proximal tubule via paracellular transport